CHEMISTRY

- 1. Sodium hydroxide is a strong base. What is the pH in a 0.01 mol/dm³ solution?
 - a. pH=2
 - b. pH=12
 - c. pH=-2
 - d. $pH=0.01 \text{ mol/dm}^3$
- 2. Which of the the following is NOT a valid electronic structure?
 - a. 2,8,4
 - b. 2,6
 - c. 2,9,1
 - d. 2,8,8,2
- 3. What numerical values of X and Y are required to balance the reaction below:

$$I_2 + \mathbf{X} \text{ OCI}^- + 2 \text{OH}^- \rightarrow \mathbf{Y} \text{ IO}^-_3 + 5 \text{CI}^- + H_2 \text{O}$$

- a. 2, 2
- b. 5,5
- c. 5, 2
- d. 2,5
- 4. What is molecular weight of benzene, C_6H_6 :
 - a. 18
 - b. 36
 - c. 78
 - d. 90
- 5. The cell membrane of the red blood cell will allow water, oxygen, carbon dioxide, and glucose to pass through. Because other substances are blocked from entering, this membrane is called:
 - a. perforated
 - b. semi- permeable
 - c. non- conductive
 - d. permeable
- 6. Energy is released from ATP when the bond is broken between:
 - a. ribose and a phosphate group
 - b. adenine and ribose
 - c. adenine and a phosphate group
 - d. two phosphate groups

- 7. The atom with electronic configuration $K^2L^8M^8N^2$ is?
 - a. Mg
 - b. Ca
 - c. Sr
 - d. Zn
- 8. Identify the number of protons and electrons in the Sc^{3+} ion. (Atomic number of Sc=21)
 - a. 18 protons, 21 electrons
 - b. 18 protons, 15 electrons
 - c. 15 protons, 18 electrons
 - d. 21 protons, 18 electrons
- 9. Which of the following molecules has only one bond between carbon atoms that exhibits sp^{3} sp^{2} type hybridization?
 - a. CH₃CH₂CH=CHCH₃
 - b. CH₃CH₂CHO
 - c. CH₃CHOHCH₂CH₃
 - $d. \quad CH_3CH_2CH_2NH_2$
- Bicarbonate of soda (sodium hydrogen carbonate) is used in many commercial preparations. Its formula is NaHCO₃. Find the mass percentages (mass %) of Na in sodium hydrogen carbonate. (Atomic masses are: Na=23, O=16, C=12, H=1)
 - a. 27.4%
 - b. 19.32%
 - c. 14.3%
 - d. 48.6%